Impacts of large-scale soil moisture anomalies on the hydroclimate of southeastern South America
The La Plata basin (LPB), located in southeastern South America (SESA), is a region of significant socioeconomic importance, particularly for agriculture. This area of South America exhibits strong land-atmosphere coupling in the warm season. In this work, we evaluate the impact of large-scale soil moisture (SM) anomalies on regional-scale atmospheric conditions. Multivariate empirical orthogonal function (EOF) analysis is used to extract the dominant modes of joint variability of monthly averaged root-zone SM and 1-month-lagged precipitation from atmospheric reanalyses. We find that the dominant EOF pattern is consistent with a positive correlation between antecedent SM and precipitation, while the second dominant EOF pattern is consistent with a negative correlation between these variables. To evaluate causality, the effects of large-scale SM anomalies on atmospheric variables are examined using the Community Earth System Model (CESM). CESM simulations suggest that anomalously dry SM is initially collocated with decreased precipitation. Subsequent changes in the atmospheric circulation associated with a thermal low draw moisture into the region, eventually promoting increased precipitation. This study investigates the pathways through which SM anomalies modulate precipitation in this region. For this reason, this study has potential atmospheric prediction applications that could benefit the population and the socioeconomic well-being of this important region.
document
http://n2t.net/ark:/85065/d7st7t78
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2021-03-01T00:00:00Z
Copyright 2021 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:29:40.875204