Identification

Title

Evaluation of three temperature profiles of a sublayer scheme to simulate SST diurnal cycle in a global ocean general circulation model

Abstract

The diurnal cycle of sea surface temperature (SST) plays an important role in the upper ocean and climate system. One way to represents the diurnal variation of SST in Ocean General Circulation Models (OGCMs) with coarse vertical resolution is to parameterize the diurnal cycle of SST without considering detailed dynamic processes within the mixed layer. In this study, a diagnostic sublayer parameterization scheme following Schiller and Godfrey (2005) was incorporated into a global OGCM (NEMO), for the first time, to simulate the diurnal cycle of SST. Moreover, three different sublayer temperature profiles (constant, linear, and exponential) were evaluated. Comparison with satellite SST and mooring temperature data indicated that the parameterization scheme with an exponential temperature profile showed the most reasonable diurnal warming simulation results, significantly improving the probability of (from 1.7% with constant temperature profile to 13.4%) diurnal SST amplitude larger than 1.0 degrees C. Furthermore, the mean biases in each season were all reduced to less than 0.16 degrees C, in good agreement with observations.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7st7sb6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-08-25T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:46:46.616523

Metadata language

eng; USA