Identification

Title

Comparison of Tropospheric Emission Spectrometer nadir water vapor retrievals with in situ measurements

Abstract

Comparisons of Tropospheric Emission Spectrometer (TES) water vapor retrievals with in situ measurements are presented. Global comparisons of TES water vapor retrievals with nighttime National Centers for Environmental Prediction RS90/RS92 radiosondes show a small (<5%) moist bias in TES retrievals in the lower troposphere (standard deviation of ∼20%), increasing to a maximum of ∼15% bias (with standard deviation reaching ∼40%) in the upper troposphere. This moist bias with respect to the sonde bias increases to a maximum of ∼15% in the upper troposphere between ∼300-200 hPa. The standard deviation in this region reaches values of ∼40%. It is important to note that the TES reported water vapor comparison statistics are not weighted by the water vapor layer amounts. Global TES/radiosonde results are comparable with the Atmospheric Infrared Sounder reported unweighted mean of 25% and root-mean-square of ∼55%. While such global comparisons help to identify general issues, inherent sampling errors and radiosonde measurement accuracy can limit the degree to which the radiosonde profiles alone can be used to validate satellite retrievals. In order to characterize the agreement of TES with in situ measurements in detail, radiance closure studies were performed using data from the Water Vapor Validation Experiment - Satellites/Sondes campaign from July 2006. Results indicate that estimated systematic errors from the forward model, TES measurements, in situ observations, retrieved temperature profiles, and clouds are likely not large enough to account for radiance differences between TES observations and forward model calculations using in situ profiles as input. Therefore, accurate validation of TES water vapor retrievals requires further campaigns with a larger variety of water vapor measurements that better characterize the atmospheric state within the TES field of view.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7vt1s93

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-05-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2008 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:58:09.339772

Metadata language

eng; USA