Identification

Title

Estimating individual Radio Occultation uncertainties using the observations and environmental parameters

Abstract

Estimation of uncertainties (random error statistics) of radio occultation (RO) observations is important for their effective assimilation in numerical weather prediction (NWP) models. Average uncertainties can be estimated for large samples of RO observations and these statistics may be used for specifying the observation errors in NWP data assim-ilation. However, the uncertainties of individual RO observations vary, and so using average uncertainty estimates will overestimate the uncertainties of some observations and underestimate those of others, reducing their overall effectiveness in the assimilation. Several parameters associated with RO observations or their atmospheric environments have been proposed to estimate individual RO errors. These include the standard deviation of bending angle (BA) departures from either climatology in the upper stratosphere and lower mesosphere (STDV) or the sample mean between 40 and 60 km (STD4060), the local spectral width (LSW), and the magnitude of the horizontal gradient of refractivity (\=HN\). In this paper we show how the uncertainties of two RO datasets, COSMIC-2 and Spire BA, as well as their combination, vary with these parameters. We find that the uncertainties are highly correlated with STDV and STD4060 in the stratosphere, and with LSW and \=HN\ in the lower troposphere. These results suggest a hybrid error model for individual BA observations that uses an average statistical model of RO errors modified by STDV or STD4060 above 30 km, and LSW or \=HN\ below 8 km.SIGNIFICANCE STATEMENT: These results contribute to the understanding of the sources of uncertainties in radio occultation observations. They could be used to improve the effectiveness of these observations in their assimilation into numerical weather prediction and reanalysis models by improving the estimation of their observational errors.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d700063z

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:13:23.525076

Metadata language

eng; USA