Identification

Title

Whole Earth Telescope observations of the hot helium atmosphere pulsating white dwarf EC 20058-5234

Abstract

We present the analysis of a total of 177 h of high-quality optical time-series photometry of the helium atmosphere pulsating white dwarf (DBV) EC 20058 - 5234. The bulk of the observations (135 h) were obtained during a WET campaign (XCOV15) in 1997 July that featured coordinated observing from four southern observatory sites over an 8-d period. The remaining data (42 h) were obtained in 2004 June at Mt John Observatory in NZ over a one-week observing period. This work significantly extends the discovery observations of this low-amplitude (few per cent) pulsator by increasing the number of detected frequencies from 8 to 18, and employs a simulation procedure to confirm the reality of these frequencies to a high level of significance (1 in 1000). The nature of the observed pulsation spectrum precludes identification of unique pulsation mode properties using any clearly discernable trends. However, we have used a global modelling procedure employing genetic algorithm techniques to identify the n, &#8467 values of eight pulsation modes, and thereby obtain asteroseismic measurements of several model parameters, including the stellar mass (0.55 M⊙) and Teff (~28 200 K). These values are consistent with those derived from published spectral fitting: Teff~ 28 400 K and log g~ 7.86. We also present persuasive evidence from apparent rotational mode splitting for two of the modes that indicates this compact object is a relatively rapid rotator with a period of 2 h. In direct analogy with the corresponding properties of the hydrogen (DAV) atmosphere pulsators, the stable low-amplitude pulsation behaviour of EC 20058 is entirely consistent with its inferred effective temperature, which indicates it is close to the blue edge of the DBV instability strip. Arguably, our most significant result from this work is the clear demonstration that EC 20058 is a very stable pulsator with several dominant pulsation modes that can be monitored for their long-term stability.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d75q4w97

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2008 Authors. Published under license by John Wiley & Sons for the Royal Meteorological Society. The definitive version is available at http://onlinelibrary.wiley.com.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:57:49.696885

Metadata language

eng; USA