Identification

Title

Assessing the WRF-Solar model performance using satellite-derived irradiance from the National Solar Radiation Database

Abstract

WRF-Solar is a numerical weather prediction model specifically designed to meet the increasing demand for accurate solar irradiance forecasting. The model provides flexibility in the representation of the aerosol-cloud-radiation processes. This flexibility can be argued to make it more difficult to improve the model's performance because of the necessity of inspecting different configurations. To alleviate this situation, WRF-Solar has a reference configuration to use as a benchmark in sensitivity experiments. However, the scarcity of high-quality ground observations is a handicap to accurately quantify the model performance. An alternative to ground observations are satellite irradiance retrievals. Herein we analyze the adequacy of the National Solar Radiation Database (NSRDB) to validate the WRF-Solar performance using high-quality global horizontal irradiance (GHI) observations across the contiguous United States (CONUS). Based on the sufficient performance of NSRDB, we further analyze the WRF-Solar forecast errors across the CONUS, the growth of the forecasting errors as a function of the lead time, and sensitivities to the grid spacing and the representation of the radiative effects of unresolved clouds. Our results based on WRF-Solar forecasts spanning 2018 reveal a 7% median degradation of the mean absolute error (MAE) from the first to the second daytime period. Reducing the grid spacing from 9 to 3 km leads to a 4% improvement in the MAE, whereas activating the radiative effects of unresolved clouds is desirable over most of the CONUS even at 3 km of grid spacing. A systematic overestimation of the GHI is found. These results illustrate the potential of GHI retrievals to contribute to increasing theWRF-Solar performance.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d76h4n5s

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:36:47.073770

Metadata language

eng; USA