Coupled decline in ocean pH and carbonate saturation during the Palaeocene–Eocene Thermal Maximum
<div class="c-article-section__content" style="box-sizing:inherit;margin-bottom:40px;padding-top:8px;" id="Abs1-content"><p style="box-sizing:inherit;margin-bottom:24px;margin-top:0px;overflow-wrap:break-word;word-break:break-word;">The Palaeocene–Eocene Thermal Maximum, a climate event 56 million years ago, was characterized by rapid carbon release and extensive ocean acidification. However, our understanding of acidification and the evolution of ocean saturation states continues to be hindered by considerable uncertainties, primarily stemming from the limited availability of proxy data. Under such conditions, data assimilation allows for an internally consistent assessment of atmospheric CO<sub style="bottom:-0.25em;box-sizing:inherit;font-size:13.5px;line-height:0;position:relative;vertical-align:baseline;">2</sub> changes, ocean acidification and carbonate saturation state during this period. Here, we present a reconstruction of the Palaeocene–Eocene Thermal Maximum carbon cycle perturbation by assimilating seafloor sediment CaCO<sub style="bottom:-0.25em;box-sizing:inherit;font-size:13.5px;line-height:0;position:relative;vertical-align:baseline;">3</sub> and sea surface temperature proxy data with simulations from an Earth system model, which includes a comprehensive carbonate system. Our reconstructions indicate a substantial increase in atmospheric CO<sub style="bottom:-0.25em;box-sizing:inherit;font-size:13.5px;line-height:0;position:relative;vertical-align:baseline;">2</sub> from 890 ppm (95% credible interval: 680–1,170 ppm) to 1,980 ppm (1,680–2,280 ppm), coupled with a notable decline in pH (0.46 units, ranging from 0.31 to 0.63 units) and surface-water calcite saturation state, decreasing from 10.2 (7.5–12.8) in the pre-event period to 3.8 (2.8–5.1) during the thermal maximum. Carbonate undersaturation intensified substantially in high-latitude surface waters during the Palaeocene–Eocene Thermal Maximum, paralleling the current decline in Arctic aragonite saturation driven by anthropogenic CO<sub style="bottom:-0.25em;box-sizing:inherit;font-size:13.5px;line-height:0;position:relative;vertical-align:baseline;">2</sub> emissions.</p></div></div></section><div class="js-context-bar-sticky-point-mobile" style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);box-sizing:inherit;color:rgb(34, 34, 34);font-family:Harding, Palatino, serif;font-size:18px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;" data-track-context="article body">
document
https://n2t.net/ark:/85065/d7c82fnz
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2024-12-01T00:00:00Z
<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-10T19:56:28.725562