Identification

Title

An optimized parallel LSQR algorithm for seismic tomography

Abstract

The LSQR algorithm developed by Paige and Saunders (1982) is considered one of the most efficient and stable methods for solving large, sparse, and ill-posed linear (or linearized) systems. In seismic tomography, the LSQR method has been widely used in solving linearized inversion problems. As the amount of seismic observations increase and tomographic techniques advance, the size of inversion problems can grow accordingly. Currently, a few parallel LSQR solvers are presented or available for solving large problems on supercomputers, but the scalabilities are generally weak because of the significant communication cost among processors. In this paper, we present the details of our optimizations on the LSQR code for, but not limited to, seismic tomographic inversions. The optimizations we have implemented to our LSQR code include: reordering the damping matrix to reduce its band-width for simplifying the communication pattern and reducing the amount of communication during calculations; adopting sparse matrix storage formats for efficiently storing and partitioning matrices; using the MPI I/O functions to parallelize the date reading and result writing processes; providing different data partition strategies for efficiently using computational resources. A large seismic tomographic inversion problem, the full-3D waveform tomography for Southern California, is used to explain the details of our optimizations and examine the performance on Yellowstone supercomputer at the NCAR-Wyoming Supercomputing Center (NWSC). The results showed that the required wall time of our code for the same inversion problem is much less than that of the LSQR solver from the PETSc library (Balay et al., 1997).

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d79z96f9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

NOTICE: This is the author's version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T01:14:15.462949

Metadata language

eng; USA