Identification

Title

Urban meteorological modeling using WRF: A sensitivity study

Abstract

This study explores the sensitivity of high-resolution mesoscale simulations of urban heat island (UHI) in the Chicago metropolitan area (CMA) and its environs to urban physical parameterizations, with emphasis on the role of lake breeze. A series of climate downscaling experiments were conducted using the urban-Weather Research and Forecasting (uWRF) model at 1-km horizontal resolution for a relatively warm period with a strong lake breeze. The study employed best available morphological data sets, selection of appropriate urban parameters, and estimates of anthropogenic heating sources for the CMA. Several urban parameterization schemes were then evaluated using these parameter values. The study also examined (1) the impacts of land data assimilation for initialization of the mesoscale model, (2) the role of urbanization on UHI and lake breeze, and (3) the effects of sub-grid scale land-cover variability on urban meteorological predictions. Comparisons of temperature and wind simulations with station observations and Moderate Resolution Imaging Spectroradiometer satellite data in the CMA showed that uWRF, with appropriate selection of urban parameter values, was able to reproduce the measured near-surface temperature and wind speeds reasonably well. In particular, the model was able to capture the observed spatial variation of 2-m near-surface temperatures at night, when the UHI effect was pronounced. Results showed that inclusion of sub-grid scale variability of land-use and initializing models with more accurate land surface data can yield improved simulations of near-surface temperatures and wind speeds, particularly in the context of simulating the extent and spatial heterogeneity of UHI effects.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7s46ts5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 Royal Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:10:06.056334

Metadata language

eng; USA