Identification

Title

A reduced complexity framework to bridge the gap between AGCMs and cloud-resolving models

Abstract

The role of convective parameterizations at high horizontal resolution and their impacts on clouds, circulation, and precipitation processes represent large uncertainties in atmospheric general circulation models (AGCMs). As the statistical equilibrium in which radiative cooling is balanced by convective heating, radiative-convective equilibrium (RCE) offers a simplified framework to investigate such uncertainties. The Community Atmosphere Model 5 is configured in a RCE setup that consists of an ocean-covered planet with diurnally varying, spatially uniform insolation with no rotation effects. A series of simulations are performed in which the planetary radius is incrementally reduced. Because of the homogeneity of the setup, the effect is to reduce grid spacing, mimicking increased resolution without increasing the number of grid points. The results suggest that the reduced planet approach is able to reproduce the behavior of convection from full high-resolution simulations. At grid spacing less than 20 km, convective motions are predominantly produced by resolved scales.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7kw5hn0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-01-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:01:46.766471

Metadata language

eng; USA