Identification

Title

Finding multiscale connectivity in our geospace observational system: Network analysis of total electron content

Abstract

We present the first complex network theory-based analysis of high-latitude total electron content (TEC) data, including dependencies on interplanetary magnetic field (IMF) clock angle and hemisphere. We examine several network measures to quantify the spatiotemporal correlation patterns in the TEC data for winter and summer months in 2016. We find that significant structure exists in the correlation patterns, distinguishing the dayside and nightside ionosphere, and specific features in the high latitudes such as the polar cap and auroral oval, including the cusp and ionospheric foot points of magnetospheric boundary layers. These features vary with the IMF, exhibiting a strong dependence on the north-south direction and generally larger variations during the winter months in both hemispheres. Our exploratory results suggest that network analysis of TEC data can be used to study characteristic ionospheric spatial scales at high latitudes, thereby extending the utility of these data. We explore mesoscale and large scale (greater than tens of kilometers and greater than hundreds of kilometers, respectively) as a function of winter/summer season, hemisphere, and IMF direction and conclude that the relative importance of different ionospheric scales is not a constant relationship. Together with an identification of important areas of future work, our findings provide a foundation for the application of network analysis techniques to ionospheric TEC. Our results suggest that network analysis can reveal new physical connections in the ionospheric system.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7k35x49

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-07-17T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:10:27.105991

Metadata language

eng; USA