Identification

Title

Improve the performance of the Noah‐MP‐Crop model by jointly assimilating soil moisture and vegetation phenology data

Abstract

The interactions between crops and the atmosphere significantly impact surface energy and hydrology budgets, climate, crop yield, and agricultural management. In this study, a multipass land data assimilation scheme (MLDAS) is proposed based on the Noah-MP-Crop model. The ensemble Kalman filter (EnKF) method is used to jointly assimilate the leaf area index (LAI), soil moisture (SM), and solar-induced chlorophyll fluorescence (SIF) observations to predict sensible (H) and latent (LE) heat fluxes, gross primary productivity (GPP), etc. Such joint assimilation is demonstrated to be effective in constraining the model state variables (i.e., leaf biomass and SM) and optimizing key crop-model parameters (i.e., specific leaf area [SLA], and maximum rate of carboxylation, Vcmax). The performance of the MLDAS is evaluated against observations at two AmeriFlux cropland sites, revealing good an agreement with the observed H, LE, and GPP. When using optimized model parameters (SLA and Vcmax) and jointly assimilating LAI, SM, and SIF observations, the MLDAS produces 34.28%, 26.90%, and 51.82% lower root mean square deviations for daily H, LE, and GPP estimates compared with the Noah-MP-Crop open loop simulation. Our findings also indicate that the H and LE predictions are more sensitive to SM measurements, while the GPP simulations are more affected by LAI and SIF observations. The results indicate that performances of physical models can be greatly improved by assimilating multi-source observations within MLDAS.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7474f9q

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:28:46.989504

Metadata language

eng; USA