Identification

Title

Diagnosing Hurricane Barry track errors and evaluating physics scalability in the UFS Short-Range Weather Application

Abstract

To assess the performance and scalability of the Unified Forecast System (UFS) Short-Range Weather (SRW) application, case studies are chosen to cover a wide variety of forecast applications. Here, model forecasts of Hurricane Barry (July 2019) are examined and analyzed. Several versions of the Global Forecast System (GFS) and Rapid Refresh Forecast System (RRFS) physics suites are run in the UFS-SRW at grid spacings of 25 km, 13 km, and 3 km. All model configurations produce significant track errors of up to 350 km at landfall. The track errors are investigated, and several commonalities are seen between model configurations. A westerly bias in the environmental steering flow surrounding the tropical cyclone (TC) is seen across forecasts, and this bias is coincident with a warm sea surface temperature (SST) bias and overactive convection on the eastern side of the forecasted TC. Positive feedback between the surface winds, latent heating, moisture, convection, and TC intensification is initiated by this SST bias. The asymmetric divergent flow induced by the excess convection results in all model TC tracks being diverted to the east as compared to the track derived from reanalysis. The large differences between runs using the same physics packages at different grid spacing suggest a deficiency in the scalability of these packages with respect to hurricane forecasting in vertical wind shear.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7j67n0p

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-09-19T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:14:28.375253

Metadata language

eng; USA