Identification

Title

Can we constrain uncertainty in hydrologic cycle projections?

Abstract

Climate change intensifies the Earth's hydrologic cycle, which has far-reaching consequences including water availability, agricultural production, and electric power generation. The rate of intensification projected by state-of-the-art global climate models (GCMs) with increasing greenhouse gas emissions, however, is highly uncertain. Thackeray et al. (2018, 2018, https://doi.org/10.1029/2018GL079698) show that these uncertainties are related to how GCMs distribute future precipitation by either strongly increasing extreme precipitation at the cost of nonextreme events or by increasing nonextreme precipitation at the cost of extreme precipitation events. These results could help to constrain uncertainties in future hydrologic cycle intensification, thereby improving our understanding of future water resource availability and extreme hydrologic events.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d72z18m5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-04-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:26:48.262812

Metadata language

eng; USA