Identification

Title

Inferring the photolysis rate of NO 2 in the stratosphere based on satellite observations

Abstract

NO and NO2 (NOx) play major roles in both tropospheric and stratospheric chemistry. This paper provides a novel method to obtain a global and accurate photolysis rate for NO2 based on satellite data. The photolysis rate J(NO2) dominates the daytime diurnal variation of NOx photochemistry. Here the spatial variation of J(NO2) at 50-90(degrees) S in December from 20-40 km is obtained using data from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) experiment. Because NO and NO2 rapidly exchange with one another in the daytime, J(NO2) can be attained assuming steady state, and the results are shown to be consistent with model results. The J(NO2) value decreases as the solar zenith angle increases and has a weak altitude dependence. A key finding is that satellite-derived J(NO2) increases in the polar regions, in good agreement with model predictions, due to the effects of ice and snow on surface albedo. Thus, the method presented here provides an observation-based check on the role of albedo in driving polar photochemistry.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d70k2dq4

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-09-20T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:14:27.590848

Metadata language

eng; USA