Identification

Title

A general approach for deriving the properties of cirrus and stratiform ice cloud particles

Abstract

A new approach is described for calculating the mass (m) and terminal velocity (Vt) of ice particles from airborne and balloon-borne imaging probe data as well as its applications for remote sensing and modeling studies. Unlike past studies that derived these parameters from the maximum (projected) dimension (D) and habit alone, the "two-parameter approach" uses D and the particle's projected cross-sectional area (A). Expressions were developed that relate the area ratio (Ar; the projected area of an ice particle normalized by the area of a circle with diameter D) to its effective density (ᵨe) and to Vt. Habit-dependent, power-law relationships between ᵨe and Ar were developed using analytic representations of the geometry of various types of planar and spatial ice crystals. Relationships were also derived from new or reanalyzed data for single ice particles and aggregates observed in clouds and at the ground. The mass relationships were evaluated by comparing calculations to direct measurements of ice water content (IWC). The calculations were from Particle Measuring Systems (PMS) 2D-C and 2D-P probes of particle size distributions in ice cloud layers on 3 days during an Atmospheric Radiation Measurement (ARM) field campaign in Oklahoma; the direct measurements were from counterflow virtual impactor (CVI) observations in ice cloud layers during the field campaign. Agreement was generally to within 20%, whereas using previous mass-dimension relationship approaches usually produced larger differences. Comparison of ground-based measurements of radar reflectivity with calculations from collocated balloon-borne ice crystal measurements also showed that the new method accurately captured the vertical reflectivity structure. Improvements in the accuracy of the estimates from the earlier mass-dimension relationships were achieved by converting them to the new form. A new, more accurate mass-dimension relationship for spatial, cirrus-type crystals was deduced from the comparison. The relationship between Vt and Ar was derived from a combination of theory and observations. A new expression accounting for the drag coefficients of large aggregates was developed from observational data. Explicit relationships for calculating Vt as a function of D for aggregates with a variety of component crystals were developed.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7dn46cb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2002-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2002 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:08:58.755340

Metadata language

eng; USA