Identification

Title

Comparative study of short-term diurnal tidal variability

Abstract

The wind and temperature measurements from an unusually long period operation of the sodium lidar at Colorado State University (41°N, 105°W) around September equinox 2003 showed significant short-term tidal variability. Coincident with the large tidal changes, a strong temperature inversion layer was also observed above 90 km. Examination of the simultaneous temperature measurement from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, not only confirms the existence of the inversion layer but also reveals the global nature of the inversion, suggesting the presence of a transient planetary wave in the mesosphere. The large tidal variability, therefore, is probably a consequence of the interaction between the transient planetary wave and tides. This possibility is investigated by using the NCAR thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) and by comparing model results with the lidar, SABER, and TIMED Doppler Interferometer (TIDI) measurements. With a large transient planetary wave specified at the model lower boundary, the model is able to produce strong diurnal tidal variability comparable to that from the lidar observation, and the modeled temperature inversion is similar to that from the SABER measurement. The model results suggest that the planetary/tidal wave interaction excites nonmigrating tides and modulates the gravity modes and/or the rotational modes of the diurnal migrating tide. Among the nonmigrating tides, the diurnal zonally symmetric (S = 0) component is the strongest, and its interaction with the planetary wave leads to a strong diurnal eastward wave number 1 component.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7js9qnn

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-09-22T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2007 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T16:58:32.762321

Metadata language

eng; USA