Identification

Title

Cross‐attractor transforms: Improving forecasts by learning optimal maps between dynamical systems and imperfect models

Abstract

Biased, incomplete numerical models are often used for forecasting states of complex dynamical systems by mapping an estimate of a “true” initial state into model phase space, making a forecast, and then mapping back to the “true” space. While advances have been made to reduce errors associated with model initialization and model forecasts, we lack a general framework for discovering optimal mappings between “true” dynamical systems and model phase spaces. Here, we propose using a data‐driven approach to infer these maps. Our approach consistently reduces errors in the Lorenz‐96 system with an imperfect model constructed to produce significant model errors compared to a reference configuration. Optimal pre‐ and post‐processing transforms leverage “shocks” and “drifts” in the imperfect model to make more skillful forecasts of the reference system. The implemented machine learning architecture using neural networks constructed with a custom analog‐adjoint layer makes the approach generalizable across applications.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7rr23n2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-02-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:54:10.648025

Metadata language

eng; USA