Identification

Title

The impacts of changing Winter Warm Spells on snow ablation over Western North America

Abstract

An increase in winter air temperature can amplify snowmelt and sublimation in mountain regions with implications to water resources and ecological systems. Winter Warm Spells (WWS) are defined as a winter period (December to February, DJF) of at least 3 consecutive days with daily maximum temperature anomaly above the 90th percentile (using a moving-average of 15 days between 2001 and 2013). We calculate WWS for every 4-km grid cell within an atmospheric model over western North America to characterize WWS and analyze snow ablation and their changes in a warmer climate. We find that days with ablation during WWS represent a small fraction of winter days (0.6 days), however, 49% of total winter ablation (33.4 mm/DJF) occurs during WWS. Greater extreme ablation rates (99th percentile) occur 18% more frequently during WWS than during non-WWS days. Ablation rates during WWS in humid regions are larger (9 mm d-1) than in dry regions (7 mm d-1) in a warmer climate, which can be explained by differences in the energy balance and the snowpack's cold content. We find that warmer (0.8 degrees C), longer (1.8 days) and more frequent (3.7 more events) WWS increase total winter ablation (on average 109% or 18 mm/DJF) in a warmer climate. Winter melt during WWS in warm and humid places is expected to increase about 3 times more than in the cold and dry region. This study provides a comprehensive description of WWS and their impact on snowpack dynamics, which is relevant to reservoir operations and water security.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7mw2nbs

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:02:22.991180

Metadata language

eng; USA