Identification

Title

Regulating fine-scale resolved convection in high-resolution models for better hurricane track prediction

Abstract

High-resolution atmospheric models are powerful tools for hurricane track and intensity predictions. Although using high resolution contributes to better representation of hurricane structure and intensity, its value in the prediction of steering flow and storm tracks is uncertain. Here we present experiments suggesting that biases in the predicted North Atlantic hurricane tracks in a high-resolution (approximately 3 km grid-spacing) model originates from the model's explicit simulation of deep convection. Differing behavior of explicit convection leads to changes in the synoptic-scale pattern and thereby to the steering flow. Our results suggest that optimizing small-scale convection activity, for example, through the model's horizontal advection scheme, can lead to significantly improved hurricane track prediction ( SIM;10% reduction of mean track error) at lead times beyond 72 hr. This work calls attention to the behavior of explicit convection in high-resolution models, and its often overlooked role in affecting larger-scale circulations and hurricane track prediction.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d72z19jp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-07-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:16:10.260889

Metadata language

eng; USA