ENSO impact on surface radiative fluxes as observed from space
We investigate the impact of El Nino-Southern Oscillation (ENSO) on surface radiative fluxes over the tropical Pacific using satellite observations and fluxes derived from selected atmospheric reanalyses. Agreement between the two in this region is important because reanalysis information is frequently used to assess surface energy budget sensitivity to ENSO. We found that during the traditional ENSO, the maximum variance of anomalous incoming solar radiation is located just west of the dateline and coincides with the area of the largest anomalous SST gradient. It can reach up to 60 W/m(2) and lags behind the Nino3 index by about a month, suggesting a response to anomalous SST gradient. The magnitude of longwave anomaly is only half that large and varies in phase with the SST anomaly. Similar anomalies were derived from outputs: from the European Centre for Medium-Weather Forecasts Reanalysis Interim (ERA-I), from the Modern Era Retrospective Analysis version 2 (MERRA-2), from the NCEP/NCAR Reanalysis 1 (R1), and from the Japanese JRA55 reanalysis. Among the four reanalyses used, results from ERA-I are the closest to observations. We have also investigated the surface wind divergence/convergence and found that the main factor limiting eastward excursions of convection is the surface wind convergence. Due to the wind divergence pattern normally present over the eastern cold tongue, anomalous convection extends into the eastern equatorial Pacific only during the strongest warm events. Our analysis also considers the El Nino Modoki events, for which the radiation flux patterns are shifted westward following the SST pattern.
document
https://n2t.org/ark:/85065/d78w3gw5
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2017-10-17T00:00:00Z
Copyright 2017 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-11T19:45:06.024269