Identification

Title

On the application of an observations-based machine learning parameterization of surface layer fluxes within an atmospheric large-eddy simulation model

Abstract

Recently, machine learning techniques have been employed to develop improved models for predicting surface-layer fluxes of momentum, heat and moisture based on field observations. Herein we explore refinement to these models, in particular artificial neural networks (NN), and investigate their applicability within an atmospheric large-eddy simulation model as an alternative to the widely adopted standard of Monin - Obukhov (MO) similarity theory. Atmospheric boundary layer (ABL) simulations under different stability conditions are carried out for a variety of scenarios of increasing complexity, from dry steady neutral boundary layers to moist diurnal cycle. Simulations using the NN models result in predicted flux differences with respect to the corresponding MO simulations that are consistent with NN model skill in predicting the tower observations. These differences lead to notable modifications of mean and turbulence quantities throughout the ABL. While these NN models provide an alternative to improve upon MO, it is demonstrated that thorough scrutiny in design and evaluation is necessary to prevent unphysical predictions and establish a robust and generalizable parameterization. Design aspects considered include input feature engineering, applicability under inputs obtained from different heights, biased predictions due to climatological fingerprints, and sensitivity to the choice of activation function. In this context, it is shown how an atmospheric model can contribute toward efficiently investigating these relevant aspects, including expanding the training data set to generalize the NN model to a range of surface roughness values. Finally, we outline remaining challenges to be addressed toward developing a universal parameterization for surface-layer fluxes using machine learning techniques.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d73j3hrs

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-08-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:18:13.462382

Metadata language

eng; USA