Atmospheric rotors and severe turbulence in a long deep valley
The conceptual model of an atmospheric rotor is reexamined in the context of a valley, using data from the Terrain-Induced Rotor Experiment (T-REX) conducted in 2006 in the southern Sierra Nevada and Owens Valley, California. All T-REX cases with strong mountain-wave activity have been investigated, and four of them (IOPs 1, 4, 6, and 13) are presented in detail. Their analysis reveals a rich variety of rotorlike turbulent flow structures that may form in the valley during periods of strong cross-mountain winds. Typical flow scenarios in the valley include elevated turbulence zones, downslope flow separation at a valley inversion, turbulent interaction of in-valley westerlies and along-valley flows, and highly transient mountain waves and rotors. The scenarios can be related to different stages of the passage of midlatitude frontal systems across the region. The observations from Owens Valley show that the elements of the classic rotor concept are modulated and, at times, almost completely offset by dynamically and thermally driven processes in the valley. Strong lee-side pressure perturbations induced by large-amplitude waves, commonly regarded as the prerequisite for flow separation, are found to be only one of the factors controlling rotor formation and severe turbulence generation in the valley. Buoyancy perturbations in the thermally layered valley atmosphere appear to play a role in many of the observed cases. Based on observational evidence from T-REX, extensions to the classic rotor concept, appropriate for a long deep valley, are proposed.
document
http://n2t.net/ark:/85065/d7sf2xrj
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2016-04-01T00:00:00Z
Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:20:54.676753