Quantifying structural uncertainty in paleoclimate data assimilation with an application to the last millennium
Paleoclimate reconstruction relies on estimates of spatiotemporal relationships among climate quantities to interpolate between proxy data. This work quantifies how structural uncertainties in those relationships translate to uncertainties in reconstructions of past climate. We develop and apply a data assimilation uncertainty quantification approach to paleoclimate networks and observational uncertainties representative of data for the last millennium. We find that structural uncertainties arising from uncertain spatial covariance relationships typically contribute 10% of the total uncertainty in reconstructed temperature variability at small (similar to 200 km), continental, and hemispheric length scales, with larger errors (50% or larger) in regions where long-range climate covariances are least certain. These structural uncertainties contribute far more to errors in uncertainty quantification, sometimes by a factor of 5 or higher. Accounting for and reducing uncertainties in climate model dynamics and resulting covariance relationships will improve paleoclimate reconstruction accuracy.
document
http://n2t.net/ark:/85065/d7kk9g48
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2020-11-28T00:00:00Z
Copyright 2020 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:14:21.095875