A study of aerosol impacts on clouds and precipitation development in a large winter cyclone
Aerosols influence cloud and precipitation development in complex ways due to myriad feedbacks at a variety of scales from individual clouds through entire storm systems. This paper describes the implementation, testing, and results of a newly modified bulk microphysical parameterization with explicit cloud droplet nucleation and ice activation by aerosols. Idealized tests and a high-resolution, convection-permitting, continental-scale, 72-h simulation with five sensitivity experiments showed that increased aerosol number concentration results in more numerous cloud droplets of overall smaller size and delays precipitation development. Furthermore, the smaller droplet sizes cause the expected increased cloud albedo effect and more subtle longwave radiation effects. Although increased aerosols generally hindered the warm-rain processes, regions of mixed-phase clouds were impacted in slightly unexpected ways with more precipitation falling north of a synoptic-scale warm front. Aerosol impacts to regions of light precipitation, less than approximately 2.5 mm h−1, were far greater than impacts to regions with higher precipitation rates. Comparisons of model forecasts with five different aerosol states versus surface precipitation measurements revealed that even a large-scale storm system with nearly a thousand observing locations did not indicate which experiment produced a more correct final forecast, indicating a need for far longer-duration simulations due to the magnitude of both model forecast error and observational uncertainty. Last, since aerosols affect cloud and precipitation phase and amount, there are resulting implications to a variety of end-user applications such as surface sensible weather and aircraft icing.
document
https://n2t.org/ark:/85065/d7959jhd
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2014-10-01T00:00:00Z
Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-12T00:05:22.437728