Identification

Title

An efficient bi-Gaussian ensemble Kalman filter for satellite infrared radiance data assimilation

Abstract

The introduction of infrared water vapor channel radiance ensemble data assimilation (DA) has improved numerical weather forecasting at operational centers. Further improvements might be possible through extending ensemble data assimilation methods to better assimilate infrared satellite radiances. Here, we will illustrate that ensemble statistics under clear-sky conditions are different from cloudy conditions. This difference suggests that extending the ensemble Kalman filter (EnKF) to handle bi-Gaussian prior distributions may yield better results than the standard EnKF. In this study, we propose a computationally efficient bi-Gaussian ensemble Kalman filter (BGEnKF) to handle bi-Gaussian prior distributions. As a proof-of-concept, we used the 40-variable Lorenz 1996 model as a proxy to examine the impacts of assimilating infrared radiances with the BGEnKF and EnKF. A nonlinear observation operator that constructs radiance-like bimodal ensemble statistics was used to generate and assimilate pseudoradiances. Inflation was required for both methods to effectively assimilate pseudoradiances. In both 800- and 20-member experiments, the BGEnKF generally outperformed the EnKF. The relative performance of the BGEnKF with respect to the EnKF improved when the observation spacing and time between DA cycles (cycling interval) are increased from small values. The relative performance then degraded when observation spacing and cycling interval become sufficiently large. The BGEnKF generated less noise than the EnKF, suggesting that the BGEnKF produces more balanced analysis states than the EnKF. This proof-of-concept study motivates future investigation into using the BGEnKF to assimilate infrared observations into high-order numerical weather models.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7862kt7

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:14:26.076203

Metadata language

eng; USA