Identification

Title

Development and application of the WRFDA-Chem three-dimensional variational (3DVAR) system: aiming to improve air quality forecasting and diagnose model deficiencies

Abstract

To improve the operational air quality forecasting over China, a new aerosol or gas-phase pollutants assimilation capability is developed within the WRFDA system using the three-dimensional variational (3DVAR) algorithm. In this first application, the interface for the MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) aerosol scheme is built with the potential for flexible extension. Based on the new WRFDA-Chem system, five experiments assimilating different surface observations, including PM2.5, PM10, SO2, NO2, O-3, and CO, are conducted for January 2017 along with a control experiment without data assimilation (DA). Results show that the WRFDA-Chem system evidently improves the air quality forecasting. From the analysis aspect, the assimilation of surface observations reduces the bias and RMSE in the initial condition (IC) remarkably; from the forecast aspect, better forecast performances are acquired up to 24 h, in which the experiment assimilating the six pollutants simultaneously displays the best forecast skill overall. With respect to the impact of the DA cycling frequency, the responses toward IC updating are found to be different among the pollutants. For PM2.5, PM10, SO2, and CO, the forecast skills increase with the DA frequency. For O-3, although improvements are acquired at the 6h cycling frequency, the advantage of more frequent DA could be consumed by the disadvantages of the unbalanced photochemistry (due to inaccurate precursor NOx/ VOC (volatile organic compound) ratios) or the changed titration process (due to changed NO2 concentrations but not NO) from assimilating the existing observations (only O-3 and NO2, but no VOC and NO). As yet the finding is based on the 00:00 UTC forecast for this winter season only, and O-3 has strong diurnal and seasonal variations. More experiments should be conducted to draw further conclusions. In addition, considering one aspect (IC) in the model is corrected by DA, the deficiencies of other aspects (e.g., chemical reactions) could be more evident. This study explores the model deficiencies by investigating the effects of assimilating gaseous precursors on the forecast of related aerosols. Results show that the parameterization (uptake coefficients) in the newly added sulfate- nitrate-ammonium (SNA)-relevant heterogeneous reactions in the model is not fully appropriate although it best simulates observed SNA aerosols without DA; since the uptake coefficients were originally tuned under the inaccurate gaseous precursor scenarios without DA, the biases from the two aspects (SNA reactions and IC DA) were just compensated. In future chemistry development, parameterizations (such as uptake coefficients) for different gaseous precursor scenarios should be adjusted and verified with the help of the DA technique. According to these results, DA ameliorates certain aspects by using observations as constraints and thus provides an opportunity to identify and diagnose the model deficiencies; it is useful especially when the uncertainties of various aspects are mixed up and the reaction paths are not clearly revealed. In the future, besides being used to improve the forecast through updating IC, DA could be treated as another approach to explore necessary developments in the model.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7fx7drz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-08-07T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:31:17.192108

Metadata language

eng; USA