An iterative storm segmentation and classification algorithm for convection-allowing models and gridded radar analyses
Thunderstorm mode strongly impacts the likelihood and predictability of tornadoes and other hazards, and thus is of great interest to severe weather forecasters and researchers. It is often impossible for a forecaster to manually classify all the storms within convection-allowing model (CAM) output during a severe weather outbreak, or for a scientist to manually classify all storms in a large CAM or radar dataset in a timely manner. Automated storm classification techniques facilitate these tasks and provide objective inputs to operational tools, including machine learning models for predicting thunderstorm hazards. Accurate storm classification, however, requires accurate storm segmentation. Many storm segmentation techniques fail to distinguish between clustered storms, thereby missing intense cells, or to identify cells embedded within quasi-linear convective systems that can produce tornadoes and damaging winds. Therefore, we have developed an iterative technique that identifies these constituent storms in addition to traditionally identified storms. Identified storms are classified according to a seven-mode scheme designed for severe weather operations and research. The classification model is a hand-developed decision tree that operates on storm properties computed from composite reflectivity and midlevel rotation fields. These properties include geometrical attributes, whether the storm contains smaller storms or resides within a larger-scale complex, and whether strong rotation exists near the storm centroid. We evaluate the classification algorithm using expert labels of 400 storms simulated by the NSSL Warn-on-Forecast System or analyzed by the NSSL Multi-Radar/Multi-Sensor product suite. The classification algorithm emulates expert opinion reasonably well (e.g., 76% accuracy for supercells), and therefore could facilitate a wide range of operational and research applications.
document
http://n2t.net/ark:/85065/d79z98p8
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2022-07-01T00:00:00Z
Copyright 2022 American Meteorological Society.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:19:04.375747