Inherently conservative nonpolynomial-based remapping schemes: Application to semi-Lagrangian transport
A group of new conservative remapping schemes based on nonpolynomial approximations is proposed. The remapping schemes rely on the conservative cascade scheme (CCS), which employs an efficient sequence of 1D remapping operations to solve a multidimensional problem. The present study adapts three new nonpolynomial-based reconstructions of subgrid variation to the CCS: the Piecewise Hyperbolic Method (PHM), the Piecewise Double Hyperbolic Method (PDHM), and the Piecewise Rational Method (PRM) for comparison with the baseline method: the Piecewise Parabolic Method (PPM). Additionally, an adaptive hybrid approximation scheme, PPM-Hybrid (PPM-H), is constructed using monotonic PPM for smooth data and local extrema and using PHM for steep jumps where PPM typically suffers large accuracy degradation because of its original monotonic filter. Smooth and nonsmooth data profiles are transported in 1D, 2D Cartesian, and 2D spherical frameworks under uniform advection, solid-body rotation, and deformational flow. Accuracy is compared via the L₁ global error norm. In general, PPM outperformed PHM, but when the majority of the error came from PPM degradation at sharp derivative changes (e.g., the vicinity near sine wave extrema), PHM was more accurate. PRM performed very similarly to PPM for nonsmooth functions, but the order of convergence was worse than PPM for smoother data. PDHM performed the worst of all of the nonpolynomial methods for nearly every test case. PPM-H outperformed PPM and all of the nonpolynomial methods for all test cases in all geometries, offering a robust advantage in the CCS scheme with a negligible increase in computational time.
document
http://n2t.net/ark:/85065/d7668dc0
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2008-12-01T00:00:00Z
Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:42:19.046147