Identification

Title

Top-down estimates of NOx and CO emissions from Washington, D.C.-Baltimore during the WINTER campaign

Abstract

Airborne mass balance experiments were conducted around the Washington, D.C.-Baltimore area using research aircraft from Purdue University and the University of Maryland to quantify emissions of nitrogen oxides (NOx = NO + NO2) and carbon monoxide (CO). The airborne mass balance experiments supported the Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign, an intensive airborne study of anthropogenic emissions along the Northeastern United States in February-March 2015, and the Fluxes of Atmospheric Greenhouse Gases in Maryland project which seeks to provide best estimates of anthropogenic emissions from the Washington, D.C.-Baltimore area. Top-down emission rates of NOx and CO estimated from the mass balance flights are compared with the Environmental Protection Agency's 2011 and 2014 National Emissions Inventory (NEI-11 and NEI-14). Inventory and observation-derived NOx emission rates are consistent within the measurement uncertainty. Observed CO emission rates are a factor of 2 lower than reported by the NEI. The NEI's accuracy has been evaluated for decades by studies of anthropogenic emissions, yet despite continuous inventory updates, observation-inventory discrepancies persist. WINTER NOx/CO2 enhancement ratios are consistent with inventories, but WINTER CO/NOx and CO/CO2 enhancement ratios are lower than those reported by other urban summertime studies, suggesting a strong influence of CO seasonal trends and/or nationwide CO reductions. There is a need for reliable observation-based criterion pollutant emission rate measurements independent of the NEI. Such determinations could be supplied by the community's reporting of sector-specific criteria pollutant/CO2 enhancement ratios and subsequent multiplication with currently available and forthcoming high-resolution CO2 inventories.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7kw5jwj

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-07-23T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:21:52.637091

Metadata language

eng; USA