Identification

Title

Impact of warmer sea surface temperature on the global pattern of intense convection: Insights from a global storm resolving model

Abstract

Intense convection (updrafts exceeding 10 m s(-1)) plays an essential role in severe weather and Earth's energy balance. Despite its importance, how the global pattern of intense convection changes in response to warmed climates remains unclear, as simulations from traditional climate models are too coarse to simulate intense convection. Here we use a kilometer-scale global storm resolving model (GSRM) and conduct year-long simulations of a control run, forced by analyzed sea surface temperature (SST), and one with a 4 K increase in SST. Comparisons show that the increased SST enhances the frequency of intense convection globally with large spatial and seasonal variations. Changes in the spatial pattern of intense convection are associated with changes in planetary circulation. Increases in the intense convection frequency do not necessarily reflect increases in convective available potential energy. The GSRM results are also compared with previously published traditional climate model projections.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7474fmr

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-08-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Geophysical Union (AGU).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:19:25.311745

Metadata language

eng; USA