Identification

Title

Potential impact of all-sky assimilation of visible and infrared satellite observations compared with radar reflectivity for convective-scale numerical weather prediction

Abstract

Although cloud-affected satellite observations are heavily used for nowcasting applications, their use in regional data assimilation is very limited despite possible benefits for convective-scale forecasts. In this article, we estimate the potential impact of assimilating cloud-affected satellite observations of visible (0.6 mu m) and near thermal infrared wavelengths (6.2 and 7.3 mu m) relative to the impact of assimilating radar reflectivity observations. We employed observing-system simulation experiments with a perfect-model forecast for two cases of strong convective summertime precipitation. Observations are simulated using the radiative transfer model RTTOV/MFASIS and assimilated by the ensemble adjustment Kalman filter in the Data Assimilation Research Testbed. The Weather Research and Forecasting model at 2-km grid resolution was used for forecasts. Results show that satellite observations can be nearly as beneficial as three-dimensional radar reflectivity observations. Under favorable conditions, where the prior contains no error in the stage of storm development but only in horizontal position and strength, the assimilation of visible observations leads to 88% of the radar impact. Under more difficult conditions, the impact of visible and infrared observations still reached 50 and 79%, respectively.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7v69pk8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:14:01.042837

Metadata language

eng; USA