Identification

Title

Observation of vertical coupling during a major sudden stratospheric warming by ICON and GOLD: A case study of the 2020/2021 warming event

Abstract

The response of the thermospheric daytime longitudinally averaged zonal and meridional winds and neutral temperature to the 2020/2021 major sudden stratospheric warming (SSW) is studied at low-to middle latitudes (0 degrees - 40 degrees N) using observations by NASA's ICON and GOLD satellites. The major SSW commenced on 1 January 2021 and lasted for several days. Results are compared with the non-SSW winter of 2019/2020 and pre-SSW period of December 2020. Major changes in winds and temperature are observed during the SSW. The northward and westward winds are enhanced in the thermosphere especially above similar to 140 km during the warming event, while temperature around 150 km drops up to 50 K compared to the pre-SSW phase. Changes in the zonal and meridional winds are likely caused by the SSW-induced changes in the propagation and dissipation conditions of internal atmospheric waves. Changes in the horizontal circulation during the SSW can generate upwelling at low-latitudes, which can contribute to the adiabatic cooling of the low-latitude thermosphere. The observed changes during the major SSW are a manifestation of long-range vertical coupling in the atmosphere.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7wq07zw

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-04-04T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:03:03.634955

Metadata language

eng; USA