Identification

Title

Observed Relationships Between the Urban Heat Island, Urban Pollution Island, and Downward Longwave Radiation in the Beijing Area

Abstract

We used the mean air temperature and particulate matter concentration at northern and southern rural stations as rural background values to calculate the urban heat island intensity (UPII) and urban pollution island intensity (UPII) for Beijing. The correlation between MIT and UPII is significantly negative in winter during the daytime and nighttime when selecting southern rural background stations but significantly positive in spring during both daytime and nighttime and in winter during the nighttime when selecting northern rural background stations. The downward longwave radiation (DLR) is highly correlated with surface air temperature and water vapor, and with particulate matter concentration in winter and summer. Water vapor also has a high correlation with particulate matter concentration in winter and summer. Winter data were used to investigate the particulate matter contribution to DLR to minimize the effect of humidity. The results indicate that in winter the urban area DLR and net radiation increased more than rural area under polluted conditions compared with clean conditions, which may lead to an increase in UHII. But in other seasons with more moisture, the aerosol effect on DLR is smaller than water vapor. Our results imply that the contribution of air pollutants to DLR had been overestimated in recent studies without removing water vapor effects on the longwave radiation. We suggest that the interaction between the urban heat island and the urban pollution island and related mitigation strategies needs to he carefully studied in the future by considering different climate zone and seasons.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7r78jg9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-06-19T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:18:10.425845

Metadata language

eng; USA