Identification

Title

Toward emulating an explicit organic chemistry mechanism with random forest models

Abstract

Predicting secondary organic aerosol (SOA) formation relies either on extremely detailed, numerically expensive models accounting for the condensation of individual species or on extremely simplified, numerically affordable models parameterizing SOA formation for large-scale simulations. In this work, we explore the possibility of creating a random forest to reproduce the behavior of a detailed atmospheric organic chemistry model at a fraction of the numerical cost. A comprehensive data set was created based on thousands of individual detailed simulations, randomly initialized to account for the variety of atmospheric chemical environments. Recurrent random forests were trained to predict organic matter formation from dodecane and toluene precursors, and the partitioning between gas and particle phases. Validation tests show that the random forests perform well without any divergence over 10 days of simulations. The distribution of errors shows that the sampling of initial conditions for the training simulations needs to focus on chemical regimes where SOA production is the most sensitive. Sensitivity tests show that specializing multiple random forests for a specific chemical regime is not more efficient than training a single general random forest for the entire data set. The most important predictors are those providing information about the chemical regime, oxidants levels, and existing organic mass. The choice of predictors is crucial as using too many unimportant predictors reduces the performances of the random forests.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d78056m2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-05-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Geophysical Union (AGU).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:28:16.113820

Metadata language

eng; USA