Identification

Title

Separating emission and meteorological drivers of mid-21st-century air quality changes in India based on multiyear global-regional chemistry-climate simulations

Abstract

Many Indian metropolitan areas currently suffer from severe air pollution such as PM2.5, which might continue into future decades, dependent on the trends in emission growth and regional climate. Based on a multiyear Nested Regional Climate Model coupled with Chemistry simulation, we developed a daily index (Hazy Weather Index for India, HWII) to characterize the meteorology-pollution relationship over three heavily polluted cities (Delhi, Kolkata, and Mumbai) and Indo-Gangetic Plain. HWII consists of near-surface (10 m) zonal wind (U10) and temperature at 200 hPa (T200) over the northwestern Indian Ocean, and local planetary boundary layer height. The simulated PM2.5 levels during the Historical Period (1997-2004) exhibit robust negative correlation with the HWII. The negative correlation captures day-to-day covariability of surface PM2.5 and meteorology, highlighting the role of monsoon-related large-scale circulation in redistributing locally emitted pollutants. More importantly, two future (2046-2054) simulations with regional warming under the Representative Concentration Pathway 6.0 and 8.5 were analyzed. The future changes in HWII and the three predictive meteorological variables work in favor of a stronger pollution horizontal dispersion and vertical ventilation and thus could lead to a reduction of PM2.5 level by 7%. The meteorology-driven reduction in PM2.5, however, is overwhelmed by the projected growth in anthropogenic emission (especially under Representative Concentration Pathway 8.5 emission by 31%). Our results are contrary to previous studies over other regions (e.g., China) where future climate change might contribute to PM2.5 increase.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7zs30q9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-12-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:23:09.385603

Metadata language

eng; USA