Identification

Title

Impact of momentum perturbation on convective boundary layer turbulence

Abstract

Mesoscale-to-microscale coupling is an important tool for conducting turbulence-resolving multiscale simulations of realistic atmospheric flows, which are crucial for applications ranging from wind energy to wildfire spread studies. Different techniques are used to facilitate the development of realistic turbulence in the large-eddy simulation (LES) domain while minimizing computational cost. Here, we explore the impact of a simple and computationally efficient Stochastic Cell Perturbation method using momentum perturbation (SCPM-M) to accelerate turbulence generation in boundary-coupled LES simulations using the Weather Research and Forecasting model. We simulate a convective boundary layer (CBL) to characterize the production and dissipation of turbulent kinetic energy (TKE) and the variation of TKE budget terms. Furthermore, we evaluate the impact of applying momentum perturbations of three magnitudes below, up to, and above the CBL on the TKE budget terms. Momentum perturbations greatly reduce the fetch associated with turbulence generation. When applied to half the vertical extent of the boundary layer, momentum perturbations produce an adequate amount of turbulence. However, when applied above the CBL, additional structures are generated at the top of the CBL, near the inversion layer. The magnitudes of the TKE budgets produced by SCPM-M when applied at varying heights and with different perturbation amplitudes are always higher near the surface and inversion layer than those produced by No-SCPM, as are their contributions to the TKE. This study provides a better understanding of how SCPM-M reduces computational costs and how different budget terms contribute to TKE in a boundary-coupled LES simulation.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7xd15v9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:04:34.156057

Metadata language

eng; USA