The global budget of atmospheric methanol: New constraints on secondary, oceanic, and terrestrial sources
Methanol is the second-most abundant organic gas in the remote atmosphere after methane, but its sources are poorly understood. Here, we report a global budget of methanol constrained by observations from the ATom aircraft campaign as implemented in the GEOS-Chem global atmospheric chemistry model. ATom observations under background marine conditions can be fit in the model with a surface ocean methanol concentration of 61 nM and a methanol yield of 13% from the newly implemented CH3O2 + OH reaction. While terrestrial biogenic emissions dominate the global atmospheric methanol budget, secondary production from CH3O2 + OH and CH3O2 + CH3O2 accounts for 29% of the total methanol source, and makes up the majority of methanol in the background marine atmosphere sampled by ATom. Net emission from the ocean is comparatively minor, particularly because of rapid deposition from the marine boundary layer. Aged anthropogenic and pyrogenic plumes sampled in ATom featured large methanol enhancements to constrain the corresponding sources. Methanol enhancements in pyrogenic plumes did not decay with age, implying in-plume secondary production. The atmospheric lifetime of methanol is only 5.3 days, reflecting losses of comparable magnitude from photooxidation and deposition. GEOS-Chem model results indicate that methanol photochemistry contributes 5%, 4%, and 1.5% of the tropospheric burdens of formaldehyde, CO, and ozone, respectively, with particularly pronounced effects in the tropical upper troposphere. The CH3O2 + OH reaction has substantial impacts on radical budgets throughout the troposphere and should be included in global atmospheric chemistry models.
document
http://n2t.net/ark:/85065/d7gx4fz7
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2021-02-27T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:13:47.150111