The sea spray contribution to sensible heat flux
Direct numerical simulations (DNS) of turbulent Couette flow are combined with Lagrangian point-particle tracking to investigate the effects of a dispersed phase on bulk passive heat transport when the two phases can exchange both momentum and sensible heat. The idealized setup allows a fixed number of particles, without the influence of gravity, to be transported by carrier-phase motions across the mean velocity and temperature gradients that exist between the solid boundaries of turbulent Couette flow. In this way, the setup serves as a model of spray in a shear-dominated layer in the immediate vicinity of the water surface and provides insight into the ability of spray to enhance sensible heat fluxes. The authors find that the dispersed phase contributes a relatively large amount of vertical heat transport and increases the total heat flux across the domain by 25% or greater. Particles that accumulate in regions associated with wall-normal ejections efficiently carry heat across the channel. Furthermore, the authors find that the relative contribution of the dispersed-phase heat flux becomes larger with Reynolds number, suggesting an importance at atmospheric scales.
document
https://n2t.org/ark:/85065/d7mp5479
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2014-02-01T00:00:00Z
Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-12T01:13:14.436239