The impact of ice phase cloud parameterizations on tropical cyclone prediction
The impact of ice phase cloud microphysical processes on prediction of tropical cyclone environment is examined for two microphysical parameterizations using the Coupled Ocean-Atmosphere Mesoscale Prediction System-Tropical Cyclone (COAMPS-TC) model. An older version of microphysical parameterization is a relatively typical single-moment scheme with five hydrometeor species: cloud water and ice, rain, snow, and graupel. An alternative newer method uses a hybrid approach of double moment in cloud ice and rain and single moment in the other three species. Basin-scale synoptic flow simulations point to important differences between these two schemes. The upper-level cloud ice concentrations produced by the older scheme are up to two orders of magnitude greater than the newer scheme, primarily due to differing assumptions concerning the ice nucleation parameterization. Significant (1°-2°C) warm biases near the 300-hPa level in the control experiments are not present using the newer scheme. The warm bias in the control simulations is associated with the longwave radiative heating near the base of the cloud ice layer. The two schemes produced different track and intensity forecasts for 15 Atlantic storms. Rightward cross-track bias and positive intensity bias in the control forecasts are significantly reduced using the newer scheme. Synthetic satellite imagery of Hurricane Igor (2010) shows more realistic brightness temperatures from the simulations using the newer scheme, in which the inner core structure is clearly discernible. Applying the synthetic satellite imagery in both quantitative and qualitative analyses helped to pinpoint the issue of excessive upper-level cloud ice in the older scheme.
document
http://n2t.net/ark:/85065/d76m37r3
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2014-02-01T00:00:00Z
Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:54:50.422275