Simulations of the West African monsoon with a superparameterized climate model. Part II: African easterly waves
The relationship between African easterly waves and convection is examined in two coupled general circulation models: the Community Climate System Model (CCSM) and the "superparameterized" CCSM (SP-CCSM). In the CCSM, the easterly waves are much weaker than observed. In the SP-CCSM, a two-dimensional cloud-resolving model replaces the conventional cloud parameterizations of CCSM. Results show that this allows for the simulation of easterly waves with realistic horizontal and vertical structures, although the model exaggerates the intensity of easterly wave activity over West Africa. The simulated waves of SP-CCSM are generated in East Africa and propagate westward at similar (although slightly slower) phase speeds to observations. The vertical structure of the waves resembles the first baroclinic mode. The coupling of the waves with convection is realistic. Evidence is provided herein that the diabatic heating associated with deep convection provides energy to the waves simulated in SP-CCSM. In contrast, horizontal and vertical structures of the weak waves in CCSM are unrealistic, and the simulated convection is decoupled from the circulation.
document
https://n2t.org/ark:/85065/d75h7h89
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2014-11-15T00:00:00Z
Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-12T00:04:31.382441