Identification

Title

Assimilation of satellite NO2 observations at high spatial resolution using OSSEs

Abstract

Observations of trace gases from space-based instruments offer the opportunity to constrain chemical and weather forecast and reanalysis models using the tools of data assimilation. In this study, observing system simulation experiments (OSSEs) are performed to investigate the potential of high space-and time-resolution column measurements as constraints on urban NOx emissions. The regional chemistry-meteorology assimilation system where meteorology and chemical variables are simultaneously assimilated is comprised of a chemical transport model, WRF-Chem, the Data Assimilation Research Testbed, and a geostationary observation simulator. We design OSSEs to investigate the sensitivity of emission inversions to the accuracy and uncertainty of the wind analyses and the emission updating scheme. We describe the overall model framework and some initial experiments that point out the first steps toward an optimal configuration for improving our understanding of NOx emissions by combining space-based measurements and data assimilation. Among the findings we describe is the dependence of errors in the estimated NOx emissions on the wind forecast errors, showing that wind vectors with a RMSE be low 1m s(-1) allow inference of N-x emissions with a RMSE of less than 30 mol/(km(2) x h) at the 3 km scale of the model we use. We demonstrate that our inference of emissions is more accurate when we simultaneously update both NOx emissions and NOx concentrations instead of solely updating emissions. Furthermore, based on our analyses, we recommend carrying out meteorology assimilations to stabilize NO2 transport from the initial wind errors before starting the emission assimilation. We show that wind uncertainties (calculated as a spread around a mean wind) are not important for estimating NOx emissions when the wind uncertainties are reduced below 1.5m s(-1). Finally, we present results assessing the role of separate vs. simultaneous chemical and meteorological assimilation in a model framework without covariance between the meteorology and chemistry.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7sf2zgc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-06-15T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:14:14.172550

Metadata language

eng; USA