Identification

Title

The influence of vertical wind shear on moist thermals

Abstract

Although it is well established that vertical wind shear helps to organize and maintain convective systems, there is a longstanding colloquial notion that it inhibits the development of deep convection. To investigate this idea, the vertical momentum budgets of sheared and unsheared moist thermals were compared in idealized cloud model simulations. Consistent with the idea of vertical wind shear inhibiting convective development, convection generally deepened at a slower rate in sheared simulations than in unsheared simulations, and the termination heights of thermals in sheared runs were correspondingly lower. These differences in deepening rates resulted from weaker vertical acceleration of thermals in the sheared compared to the unsheared runs. Downward-oriented dynamic pressure acceleration was enhanced by vertical wind shear, which was the primary reason for relatively weak upward acceleration of sheared thermals. This result contrasts with previous ideas that entrainment or buoyant perturbation pressure accelerations are the primary factors inhibiting the growth of sheared convection. A composite thermal analysis indicates that enhancement of dynamic pressure acceleration in the sheared runs is caused by asymmetric aerodynamic lift forces associated with shear-driven cross flow perpendicular to the direction of the thermals' ascent. These results provide a plausible explanation for why convection is slower to deepen in sheared environments and why slanted convection tends to be weaker than upright convection in squall lines.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7p55rm4

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:28:30.812260

Metadata language

eng; USA