Identification

Title

Can we predict the predictability of high-impact weather events?

Abstract

Ensemble sensitivity analysis (ESA) offers a computationally inexpensive way to diagnose sources of high-impact forecast feature uncertainty by relating a localized forecast phenomenon of interest (response function) back to early or initial forecast conditions (sensitivity variables). These information-rich diagnostic fields allow us to quantify the predictability characteristics of a specific forecast event. This work harnesses insights from a month-long dataset of ESA applied to convection-allowing model precipitation forecasts in the Central Plains of the United States. Temporally averaged and spatially averaged sensitivity statistics are correlated with a variety of other metrics, such as skill, spread, and mean forecast precipitation accumulation. A high, but imperfect, correlation (0.81) between forecast precipitation and sensitivity is discovered. This quantity confirms the qualitatively known notion that while there is a connection between predictability and event magnitude, a high-end event does not necessarily entail a low-predictability (high-sensitivity) forecast. Flow regimes within this dataset are analyzed to see which patterns lend themselves to high- and low-predictability forecast scenarios. Finally, a novel metric known as the error growth realization (EGR) ratio is introduced. Derived by dividing the two mathematical formulations of ESA, this metric shows preliminary promise as a predictor of forecast skill prior to the onset of a high-impact convective event. In essence, this research exemplifies the potential of ESA beyond its traditional use in case studies. By applying ESA to a broader dataset, we can glean valuable insight into the predictability of high-impact weather events and, in turn, work toward a collective baseline on what constitutes a high- or low-predictability event in the first place.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7b280m1

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;font-weight:normal;" data-sheets-root="1">Copyright 2024 American Meteorological Society (AMS).</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:57:23.008494

Metadata language

eng; USA