Identification

Title

Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model

Abstract

We combine aircraft measurements (Second Texas Air Quality Study, Megacity Initiative: Local and Global Research Observations, Intercontinental Chemical Transport Experiment: Phase B) over the United States, Mexico, and the Pacific with a 3-D model (GEOS-Chem) to evaluate formaldehyde column (ΩHCHO) retrievals from the Ozone Monitoring Instrument (OMI) and assess the information they provide on HCHO across local to regional scales and urban to background regimes. OMI ΩHCHO correlates well with columns derived from aircraft measurements and GEOS-Chem (R = 0.80). For the full data ensemble, OMI's mean bias is −3% relative to aircraft-derived ΩHCHO (−17% where ΩHCHO > 5 × 1015 molecules cm⁻²) and −8% relative to GEOS-Chem, within expected uncertainty for the retrieval. Some negative bias is expected for the satellite and model, given the plume sampling of many flights and averaging over the satellite and model footprints. Major axis regression for OMI versus aircraft and model columns yields slopes (95% confidence intervals) of 0.80 (0.62 - 1.03) and 0.98 (0.73 - 1.35), respectively, with no significant intercept. Aircraft measurements indicate that the normalized vertical HCHO distribution, required by the satellite retrieval, is well captured by GEOS-Chem, except near Mexico City. Using measured HCHO profiles in the retrieval algorithm does not improve satellite-aircraft agreement, suggesting that use of a global model to specify shape factors does not substantially degrade retrievals over polluted areas. While the OMI measurements show that biogenic volatile organic compounds dominate intra-annual and regional ΩHCHO variability across the United States, smaller anthropogenic ΩHCHO gradients are detectable at finer spatial scales (~20 - 200 km) near many urban areas.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7jq11kr

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2011-03-10T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2011 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:57:56.244371

Metadata language

eng; USA