Identification

Title

Role of advection of parameterized turbulence kinetic energy in idealized tropical cyclone simulations

Abstract

Horizontal homogeneity is typically assumed in the design of planetary boundary layer (PBL) parameterizations in weather prediction models. Consistent with this assumption, PBL schemes with predictive equations for subgrid turbulence kinetic energy (TKE) typically neglect advection of TKE. However, tropical cyclone (TC) boundary layers are inhomogeneous, particularly in the eyewall. To gain further insight, this study examines the effect of advection of TKE using the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme in idealized TC simulations. The analysis focuses on two simulations, one that includes TKE advection (CTL) and one that does not (NoADV). Results show that relatively large TKE in the eyewall above 2 km is predominantly attributable to vertical advection of TKE in CTL. Interestingly, buoyancy production of TKE is negative in this region in both simulations; thus, buoyancy effects cannot explain observed columns of TKE in TC eyewalls. Both horizontal and vertical advection of TKE tends to reduce TKE and vertical viscosity in the nearsurface inflow layer, particularly in the eyewall of TCs. Results also show that the simulated TC in CTL has slightly stronger maximum winds, slightly smaller radius of maximum wind, and similar to 5% smaller radius of gale-force wind than in NoADV. These differences are consistent with absolute angular momentum being advected to smaller radii in CTL. Sensitivity simulations further reveal that the differences between CTL andNoADVare more attributable to vertical advection (rather than horizontal advection) of TKE. Recommendations for improvements of PBL schemes that use predictive equations for TKE are also discussed.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7222z9t

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:34:56.976656

Metadata language

eng; USA