Identification

Title

The fall speed variability of similarly sized ice particle aggregates

Abstract

The terminal velocity (Vt) of ice hydrometeors is of high importance to atmospheric modeling. Vt is governed by the physical characteristics of a hydrometeor, including mass and projected area, as well as environmental conditions. When liquid hydrometeors coalesce to form larger hydrometeors, the resulting hydrometeor can readily be characterized by its spherical or near-spherical shape. For ice hydrometeors, it is more complicated because of the variability of ice shapes possible in the atmosphere as well as the inherent randomness in the aggregation process, which leads to highly variable characteristics. The abundance of atmospheric processes affecting ice particle dimensional characteristics creates potential for highly variable Vt for ice particles that are predicted or measured to be of the “same size.” In this article we explore the variability of ice hydrometeor Vt both theoretically and through the use of experimental observations. Theoretically, the variability in Vt is investigated by analyzing the microphysical characteristics of randomly aggregated hexagonal shapes. The modeled dimensional characteristics are then compared to aircraft probe measurements to constrain the variability in atmospheric ice hydrometeor Vt. Results show that the spread in Vt can be represented with Gaussian distributions relative to a mean. Variability expressed as the full width at half maximum of the normalized Gaussian probability distribution function is around 20%, with somewhat higher values associated with larger particle sizes and warmer temperatures. Field campaigns where mostly convective clouds were sampled displayed low variability, while Arctic and midlatitude winter campaigns showed broader Vt spectra.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7f76gk8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:08:52.232225

Metadata language

eng; USA