Identification

Title

Doppler lidar measurements of vertical velocity spectra in the convective planetary boundary layer

Abstract

We utilized a Doppler lidar to measure spectra of vertical velocity w from 390m above the surface to the top of the daytime convective boundary layer (CBL). The high resolution 2μm wavelength Doppler lidar developed by the NOAA Environmental Technology Laboratory was used to detect the mean radial velocity of aerosol particles. It operated continuously during the daytime in the zenith-pointing mode for several days in summer 1996 during the Lidars-in-Flat-Terrain experiment over level farmland in central Illinois, U.S.A. The temporal resolution of the lidar was about 1 s, and the range-gate resolution was about 30m. The vertical cross-sections were used to calculate spectra as a function of height with unprecedented vertical resolution throughout much of the CBL, and, in general, we find continuity of the spectral peaks throughout the depth of the CBL. We compare the observed spectra with previous formulations based on both measurements and numerical simulations, and discuss the considerable differences, both on an averaged and a case-by-case basis. We fit the observed spectra to a model that takes into account the wavelength of the spectral peak and the curvature of the spectra across the transition from low wavenumbers to the inertial subrange. The curvature generally is as large or larger than the von Kármán spectra. There is large case-to-case variability, some of which can be linked to the mean structure of the CBL, especially the mean wind and the convective instability. We also find a large case-to-case variability in our estimates of normalized turbulent kinetic energy dissipation deduced from the spectra, likely due for the most part to a varying ratio of entrainment flux to surface flux. Finally, we find a relatively larger contribution to the low wavenumber region of the spectra in cases with smaller shear across the capping inversion, and suggest that this may be due partly to gravity waves in the inversion and overlying free atmosphere.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7x63nz4

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2009-06-21T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by Springer. Copyright 2009 Springer.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:57:03.191856

Metadata language

eng; USA