Identification

Title

Toward improving short-term predictions of fine particulate matter over the United States via assimilation of satellite aerosol optical depth retrievals

Abstract

This study develops a new approach to improve simulations of the particulate matter of aerodynamic diameter smaller than 2.5 mu m (PM2.5) in the Community Multiscale Air Quality (CMAQ) model via assimilation of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) retrievals using the Gridpoint Statistical Interpolation (GSI) system. In contrast to previous studies that only consider errors due to transport, our computation of the background error covariance matrix incorporates uncertainties in anthropogenic emissions. To understand the impact of this approach, three experiments (one background and two assimilations) are performed over the contiguous United States (CONUS) from 15 July to 14 August 2014. The background CMAQ experiment significantly underestimates both the MODIS AOD and surface PM2.5 levels. MODIS AOD assimilation pushes both the CMAQ AOD and surface PM2.5 distributions toward the observed distributions, but CMAQ still underestimates the observations. Averaged over CONUS, the two assimilation experiments with and without including the anthropogenic emission uncertainties improve the correlation coefficient between the model and independent observations of PM2.5 by similar to 67% and similar to 48%, respectively, and reduces the mean bias by similar to 38% and similar to 10%, respectively. The assimilation improves the model performance everywhere over CONUS, except the New York and Wisconsin, where CMAQ overestimates the observed PM2.5 during nighttime after assimilation likely because of overcorrection of aerosol mass concentrations by the AOD assimilation. Future work should incorporate uncertainties in other processes (biomass burning and biogenic emissions, deposition, chemistry, transport, and boundary conditions) to further enhance the value of assimilating spaceborne AOD retrievals.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7jd50vb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-03-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:30:25.177969

Metadata language

eng; USA