The influence of El Niño-Southern oscillation on lightning in the Gulf coast of the United States, Part 2: Monthly correlations
The El Niño-Southern Oscillation (ENSO) cycle is known to influence weather and climate along the Gulf Coast region, causing anomalously high precipitation during El Niño winters. This region is also known for having the highest lightning flash density in the United States. An 8-yr dataset (1995-2002) of cloud-to-ground (CG) lightning flashes was analyzed to determine if the ENSO cycle influences lighting activity along the Gulf Coast region. Simple Pearson's correlations were computed between concurrent monthly pairings of Niño-3.4 sea surface temperature (SST) and CG lightning flash deviation values from the study area. The correlation results are mapped and analyzed for links to meteorological features. Statistically significant correlation values greater than 0.8 were noted over large swaths of the study area during each winter month. The highest correlations were arranged in banded swaths and associated with regions of low flash densities during December and February. In January, areas of high correlation were spatially coincident with areas of enhanced flash density. Both the enhanced CG flash regions and high correlation values and patterns are indicative of a southerly shift in the midlatitude storm track known to occur during warm ENSO events. During the spring and summer, most of the region has weak correlation with ENSO except for August, which has a large area of negative correlations. These findings indicate that lightning increases during La Niña summers. Correlation patterns in late fall are similar to those of winter. The ENSO-lightning relationship has implications for hazard assessment and can be a useful tool for long-term seasonal planning.
document
https://n2t.org/ark:/85065/d7qr4x9z
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2008-07-01T00:00:00Z
Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-17T15:57:15.039214